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ABSTRACT- A physically-based linear stochastic geometric canopy-soil

reflectance model is presented for characterizing spatial variability of semivegetated

landscapes at subpixel and regional scales. Landscapes are conceptualized as stochastic

geometric surfaces, incorporating not only the variability in geometric elements, but also

the variability in vegetation and soil background reflectance which can be important in

some scenes. The model is used to investigate several possible mechanisms which

contribute to the often observed characteristic triangular shape of red-infrared

scatteruams of semivegetated landscapes. Sca_tergrams of simulated semivegetated

scenes aze analyzed with respect to the scales of the satellite pixel and subpixel

components. Analysis of actual aerial radiometric data of a pecan orchard is presented

in comparison with ground observations as preliminary confirmation of the theoretical

results.
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I.INTRODUCTION

The physically-based parameterization of heat and moisture fluxes from

sem3vegetated landscapes is an unsolved problem in many mesoscale studies. One

difficulty is quantifying state variables (e.g., vegetation cover, soil moisture, surface

temperature) which exhibit important spatial and temporal variability at scales

smaller than the scale of the measurement. Examples arise in the characterization,

using satellite multispectral data, of semivegetated landscapes such as the semiarid

regions of the southwest United States and agricultural lands during their early

growing stages. In both cases vegetation density varies at characteristic scales

(several meters) much smaller than the pixel scale of current satellite multispectral

(MSS) sensors (several tens of meters). Pixel scale measurements represent the

integrated reflectance of soil and vegetation, and as a result, techniques to

disaggregate important subpixel components are warranted.

In addition to subpixel variations, man), landscapes exhibit regional variations

in soil and vegetation reflectance due to a variety of geoclimatic factors. For

instance, changes in slope and aspect induce corresponding changes in scene

reflectance through an effective altering in the illumination and viewing angles.

Changes in elevation, slope, and aspect also cause scene variability through their

indirect influence on such properties as soil moisture, and vegetation species and

density. Thus, many soil and vegetation properties which exhibit small random_

subpixel scale fluctuations may be spatially correlated at larger geoclimatic scales.

Knowledge of that correlation provides valuable insight into the solution of the

parameterization problem.

The purpose of this paper is twofold. A first goal is to demonstrate how the

subpixel variability ,_ semivegetated landscapes can beregionally variable
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characterizedusing a stochastic-geometriccanopy reflectancemodel. The approach

is to retain the bulk plant and soil parameters which dominate scene reflectance

(fractional cover, plant geometry, and plant and soil reflectance), but to prescribe

them as random variates, when necessary, in order to absorb scene variability caused

by spatial fluctuations in numerous secondary parameters (leaf area and orientation,

surface roughness, soil moisture and organic content). The result is a flexible means

of characterizing landscapes without having to specify an inordinate number of

parameters which may be of minimal importance to large scale hydrologic processes.

A second goal is to demonstrate the utility of the canopy-soil reflectance model

for understanding the information content of multidimensional scattergrams.

Specifically, using simulated images, the present work examines the evolution of the

two-dimensional (red-infrared) scattergram of semivegetated scenes, and the different

possible mechanisms which contribute to its often observed characteristic triangular

shape-or "tasseled cap" [1]. Additionally, as a preliminary evaluation of this

approach, actual aerial radiometric data of a pecan orchard are analyzed in

conjunction with a theoretical model of the orchard, and are compared with ground

observations. Such understanding is invaluable to the solution of the inverse

problem, the estimation of subpixel parameter va.r]ab]iity gh, en the observed

scattergram.

II. REFLECTANCE MODELS OF INHOMOGENEOUS CANOPIES

The reflectance of semivegetated landscapes results from the complex

scattering, absorption, and emittance properties of the plant components and soil

background. The modeling of this process is difficult, in part, due to the spatial

variability of those properties.
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Physically-based radiative transfer models for horizontally homogeneous

canopies generally require the estimation of a large number of parameters and

extensive data sets (for example, [2], [3], [4], [5]). Regional scale investigations

compound the problem due to spatial variations in the landscape. Thus, practical

application of the above models using existing satellites is not possible due to the

limited data currently available.

An alternative approachto modeling canopy reflectance,applicable to regional

scale investigations, is through the use of geometric models. These models, an

evolution of early mixed pixel studies [61,conceptualizeclumps of vegetation as solid

three--dimensionalgeometric elements superposedon a fiat soil background. The

distribution of the elementsthemselvescan be geometric,as in the caseof row crops,

or statistical, as for natural vegetatedlandscapes.

Geometric models have been successfully used to describe much of the

variability of semivegetated landscapesby altering the shape and density of the

geometric canopy elements. Otterman [7] modeled forests and desert vegetation as

thin vertical cylinders of random height and spacing. Richardson et al. [8] modeled

crop canopies as rectangular rows, neglecting scattering between the crop and soil.

Jackson et al. [9] extended the above model to include shadowed canopy effects.

S_rahler and Li [11)i and Li and S_rahler /1J] modeled conifer forests as randomly

located cones of similar shape and random height, assuming constant tree and soil.
¢

background reflectances.

The application of geometric models to natural watersheds generally requires

assumptions on the statistical distribution of plant spacing. Several authors (see, for

exaa'nple, [12], [13]) have focused on the problem of fitting stochastic models to

spatial point patterns of natural (undisturbed) vegetation. Diggle [13] concluded
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that several forest speciesfollowed a Poisson distribution or a Poisson cluster

process.

Significant progress in incorporating statistical spatial distributions into the

analysisof remotely senseddata has only recently been achieved [10], [11], [14]. Li

and Strahler [11] and Strahler and Li [10] assumed a homogcneous Poisson

distribution of conifer tree locations. Woodcock [14] used a similar model to

examine the relation among the scale of pixel components, resolution size, and two

indicators of spatial correlation: the variogram and the local variance.

III. STOCHASTIC CANOPY REFLECTANCE MODEL

Many semivegetated landscapes are characterized not only by variations in

plant size and density, but also by variations in the reflectance of the vegetation and

soil background. Variations in reflectance are brought about by changes in

topography and in the physical properties of the plant (e.g., leaf area, amount of

chlorophyll) and soil background (e.g., surface roughness, soil moisture). Such

variability can have a significant influence on the interpretation of scenes and

therefore must be rec%_nized when applying geometric models to regional scale

problems.

One method for incorporating the soil and vegetation reflectance variability

into geometric models is by treating the reflectance terms as random variates. This

approach assumes that the overall spatial variability of an), one term, for example,

illuminated soil reflectance, is a result of the combined variability of numerous

physical properties which cannot be easily discerned. The practical advantage of this

approach is that it allows one to characterize the spatial variability of the bulk

model variates without having to specify numerous parameters which may be of

se, ndary importance to the ri ional scale investigation.
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The total reflectanceof an individual pixel, R, is modeled as an area-weighted

linear combination of the reflectance of four bulk components: illuminated and

shadowed canopy, and illuminated and shadowed soil background. It can be

expressed in its most generM form as

R(A) = -- (A) + msRms(A) + -- (_) + -- (A) (1)mIRmi glRg I gsRgs

where A = wavelength,

(A) = average reflectance of illuminated vegetation of a given pixel,
m I

Rm (_) = average reflectance of shadowed vegetation of a given pixel,
S

R (A)
gI

= average reflectance of illuminated soil background of a given

pixel,

Ro( )
v S

1TII- nl S

f$ fr

oI_Os

-- average reflectance of soil background shadowed by canopy of

a given pixel,

= _rcentage of pixel covered with illuminated and shadowed

canopy, respectively,and

= percentage of pixel occupied by illuminated and shadowed

soilback_ound, respectively.

Average refiectances and percent covers are defined, for example

-- = 1 RmI(A ) dAmI " (2)

1

m I = 1_ IA dAm! (a)
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where

and

A = total area of a given pixel,

A = total area of a given pixel covered with vegetation
m I

dAmI= area of smallest homogeneous element of illuminated canopy,

R (A) = reflectance of smallest homogeneous element of illuminated
m I

canopy.

The total percent canopy cover, m, soil background, g, and shadow, s, in a

pixel are, respectively,

where

m -- ml + ms (4)

g = gI + gs (5)

s = ms + gs (6)

ml + m s + gl + gs = I (7)

In a stochastic-geometric model, all the terms in equation (I) can be treated

as random variates,if necessary, depending on the nature of the scene. That is,

they can be characterized with respect to their mean; variance; and, in some cases, a

spatial covariance. Additionally, there may e:dst cross covariances between the

various terms. For example, the vegetation reflectance_ml(A) may depend on the

percent vegetation cover, ml, or on the soilbackground reflectance._ (A). Also,.
Ol

for large--scalepixels,the fractional covers will be correlated (see Case I\",lat_erin

this report).

IV. SOIL REFLECTANCE

Soil background reflectance often exhibits high variability in semivegetated

scenes. It varies over a wide range of length scales due tL changes in the physical.
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structure and chemical composition of the near surface soil. Small-scale

perturbations (meters or less) occur with changesin mineral content, water and

organic matter content, particle size, soil texture and surface roughness. Numerous

experimental investigations have examined the relationship between bare soil

reflectanceand thoseparameters(for a summary,seeMyers [15]).

Soil reflectance also varies at larger geophysical scales. For example, the

presenceof hills will change soil reflectance due to an effective altering of the

illumination and viewing angles. Changesin elevation, slope, and aspect will influ-

ence soil moisture and organic matter content. Subsurfacevariations in geologic

formations will affect mineral content. Those geophysicalfactors impose a spatial

correlation to soil reflectanceat scalesof 10 to 103 meters.

In addition to spatial correlations, soil reflectancecan also be cross-correlated

at different wavelengths. Thesewavelength dependentcorrelations are manifested in

multispectral scattergramsof real scenesthrough the preferred location and orienta-

tion of bare soil pixets (see, for example, [1], [16], [17]). For red-infrared scauer-

grams of typical semivegetatedscenes,the data often t_e on the form of a triangle

whose base consists of a straight line emanating from approximately the origin.

Researchershave identified that base line, consisting primarily of pixels containing

bare soil and dr)" vegetation, as the "soil line".

Analysis of previously published theoretical and experimental studies (for

example [18], [19], [20], [21]) indicates that for a given type of soil variability, the

soil reflectance at one wavelen_h is often functionally related to the reflectance in

another wavelength.

linear expression

In many cases, the relation can be appro:dmated by a simple

R(a2) = + -y (s)

-8-



where the slope, or, and intercept, 7, are coefficientsdependenton both the wave--

length and the type of variability. Thus, variability of any one soil parameter can

lead to a representative "line" in a two-dimensional scattergram.

For instance, Figure 1 contains three hypothetical visible-infrared scattergrams,

representing three different scenes, in each of which only one soil parameter is

'allowed to vary. In Scene 1 only the amounts of two minerals are allowed to vary,

while all other soil parameters such as surface roughness, moisture, etc. are held

constant. The resulting scattergram forms a "soil mineral line" in which the end

points approach the respective reflectances of the pure minerals. The shape and

orientation of the line may be linear (as drawn) or nonlinear, and are determined by

the location of the end points and the nature of the mixing of the two mineral types

[22]. Pixets lying between the end points will contain mineral amounts

proportional to their distance along the line.

Scene _'2 contains hypothetical pixels in which only soil moisture is allowed to

vary. Soil moisture increases the radiation absorp:ion capacity of the soil in the

xdsibleand near im_ared regions. Analysis of published experimental data [20],[21],

indicates that, for many soil types, equation (8) is applicable. Thus the locus of

points for Scene 2 pixels should form a "soilmoisture line" as indicated in Figxlre 1

with the pixels along the leftportion of the linecontaining higher soilmoisture than

those to the right.

f

Finally, Scene 3 contains pixels in which only surface roughness varies. Soil

reflectancegenerally decreases with increased surface roughness due to the increase in

shadow cast by the soilparticlesand ago_regatesonto itself[15],[18]. The resulting

"soil shadow line" is approximately linear with an intercept of near zero. The

linearity occurs since the amount of shadow caused by the soil aggregates is
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practically the same for the range of wavelengths being considered. In fact, a near

zero intercept for straight soil lines of real scenes (with low diffuse radiation) may be

an indication that soil shadow induced by its physical structure is the dominant

source of soil reflectance variability.

In actuality, real soil scenes contain a composite of several types of variability.

The corresponding soil line is generally linear in the mean although considerable

scatter can exist [1], [16]. A unique soil line will exist only if either 1) one

dominant type of soil variability is occurring or 2) the scatter due to the different

types of soil variability act in the same direction.

Vo RED-INFRARED SCATTERGRAMS OF SEMIVEGETATED

LANDSCAPES

One application of the stochastic-geometric canopy reflectance model is the

investigation of the structure, or physical basis, of red-infrared scattergrams of

semJvegetated landscapes. That is achieved by using the model with typical values

to simulate different scenes, and then comparing the shape and common features of

the corresponding red-infrared scatterbrains. An understanding of the influence of a

given random variable is obtained by altering one of its statistics (e.g, variance):

while holding all others constant.

The following section presents the results of five different simulations. The

input values of the different model variables are provided in Table 1. \_ile those

scenes represent on])" a few selected scenarios, they were chosen to demonstrate the

important general relationship between the main model variables and their effect on

the scattergram.

-10-



Scenesare generatedas follows. A sceneconsistsof eight segments,each 150

meters square with one meter square pixels. Each segment within a scene is

assigned an identical soil background reflectance distribution. Next, trees

representedby square cylinders of fixed height and canopy area are superposedon

the soil background of each segment according to a Poisson distribution having a

different arrival rate for eachsegment. The shadowedportions of the sceneare then

determined. Typical valuesof soil and vegetation reflectanceare assumed{2], [15],

[19] as indicated in Table 1. Finally, the original grid is aggregatedto pixel sizesof

5, 10, and 30 meters squareby averagingthe reflectancevalues of the componentsof

the grid. The latter two represent SPOT and Thematic Mapper satellite scales,

respectively. Information regarding subpixel variables is recorded at each level of

aggregation.

A. CASE I- CONSTANT REFLECTANCES, NO SHADOWS

This case represents an idealized two-component situation in wl_ich ti_e

vegetation and soil each have a constant reflectance over the entire scene, and

observations are from the nadir. The sun is near zenith resulting in no shadows in

the field of view. Hence, the only random variable is percent cover. The ecuation

expressing total reflectance from an individual pixel is taken from equations (i)

through (7) with m s = °s'_ = 0, or

R(A) = mRmi(A ) + (1 - m)R,oi ()')
(s)

The visible-infrared scattergrams for the Case 1 simulation are shown in

Figures 2-a,b,c for the levels 5, 10, and 30 aggregation. They indicate that all the

data points fall on a straight line whose end points represent pixels containing the
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maximum (upper left) and minimum (lower right) percent vegetation cover within

the scene. The length of the line decreaseswith increasing aggregation since the

standard deviation of the canopy density decreasesas the pixel size increases. The

percent cover of any pixel lying along the line is proportional to the distance

betweenthe end points.

B. CASE H- VARIABLE SOIL REFLECTANCE, NO SHADOWS

In addition to changing vegetation cover, the Case II simulation includes the

effect of spatial variability of soil reflectance. Both small scale (subpixel) and large

scale (regional) variations ace incorporated by treating soil reflectance as a

two-dimensional random field with a prescribed covariance structure.

While various functional forms might be applicable, for demonstration

purposes, the Case II simulation assumes that soil reflectance is normally distributed

with an exponential covariance function. It is expressed

cov(d) = _2 exp(-3d) (9)

where c,2 = the variance of the soil reflectance distribution,

= inverse length scale of the covariance function, and

d = distance between two points in the scene.

The simulated bare soil scene for the red band is shown in Figure 3. That

scene, generated using the Turning Bands Method [23], contains a mean reflectance

(0.15), standard deviation (0.023), and exponential covariance. A similar scene (not

shown) was generated for the infrared band. The mean and standard deviations of

both scenes are based on the hypothetical soil reflectance curve shown in Figure 4,
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which indicates a typical range of reflectancesfor a soil with variable properties

(e.g., soil moisture or surfaceroughness)[15], [20].

The length scale of the exponential covariancefunction was chosen to be 20

meters. While that might representsomegeophysicalscale,for the present case it is

chosenfor convenience. It is much larger than the grid scale of one meter, and the

two smaller aggregations(5 and 10 meters), but smallcr than the largest aggregation

(30 meters). Thus, the choice of that scale allows one to examine the relation

betweencovariancelength scaleand pixel size.

The total reflectancefrom a given pixel in the CaseII simulation is,

R(A) = mRmi(A ) + (I -m)Rgi(A )
(1o)

The results of the Case II simulation for all three aggregations are sho_:n in

Figures 5-a,b.c. (Regular spaces in the scattergrams, especially at lower level

au_regations, are due to finite increments in percent cover as limited by the level of

aggregation. This effect occurs in subsequent cases as well.) The) indicate that the

*--; O"red-infrared scattergTam tend._ to :ake on the cha, acten_lc shape of a L,,anole. The

top of the triangle represents full canopy cover, and the base represents the

minimum vegetation cover in the scene. For areas in which it can be assumed that

bare soilexists,the base of the trianglerepresents the classic"soilline."

V,qfile Case II is still a relatively simple example, it demonstrates, the

usefulness of the scattergram for explaining subpixe| variability. For instance, all

pixeisfallingon a lineparallelto the soilline willhave the same percent vegetation.

A second observation is that all pixels fallingon a straight line extending from the

top of the triangle to the soil line will have the same value of
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average soil reflectance. The above interpretations of the scattergram are indicated

on Figure 6 (an expanded version of 5b) for the level 10 aggregation.

The importance of pixel scale relative to the covariance function is seen in the

size of the triangles at different levels of aggregation. The scattergrams indicate

that the length of the soil line and hence the width of the triangle decrease with

increasing aggregation. Both the standard deviation and the covariance length scale

contribute to that effect. Since scenes composed of large pixels average over a

greater area than scenes with small pixels, statistically, one can expect the former

case to have a lower standard deviation. However, that effect is mitigated by the

covariance length scale. Scenes with small length scales (relative to pixel size) will

exhibit short soil lines while scenes with large length scales will exhibit long soil

lines.

C. CASE III- VARIABLE VEGETATION REFLECTANCE, NO SHADOWS

In addition to variable percent cover and variable soil reflectance, the Case III

simulation introduces variable vegetation reflectance and examines its effect on the

red-infrared scauergrarn. Vegetation reflectance will change a_ sinai] and :large

spatial scales due to variations in a number of ptant parameters, including plant

species, leaf reflectance. _owth stage, plant architecture, t_f orientation and

distribution, leaf area, and plant stress [2]. Re_onal scale variations in the pattern

of natural vegetation and dominant species are influenced by elevation, gradient, and

local climate [12].

As for soil, Case III treats the variation in vegetation reflectance as a normally

distributed random variable with an exponential covariance structure. It further

assumes that reflectances in the infrared and visible bands are linearly related with

negative slope. That relationship is not intended to represent all types of vegetation

variability, but may be a simple approximation for some cases. For instance,
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increasesin leaf area aregenerally associatedwith decreasesin visible reflectance and

increasesin infrared reflectance(seefor example, [24]. [25]).

For CaseIII, the total reflectanceof a given pixel becomes

R(,k) = mRmi(,k) + (1 -m)R--gl(,k) (11)

where the three random variables are percent cover (m), vegetation reflectance (Ilmi)

and soil reflectance(ggi).

The scattergram for Case III is presented in Figures 7-a,b,c for all levels of

aggregation. The differencefrom Case II is that the top of the triangle has spread

open, resulting in a quadrilateral data plot. An envelopecurve along the top of the

quadrilateral representspixels of maximum vegetation cover. For scenescontaining

full canopycover, that locus of points can be consideredthe "canopy line" analogous

to the soil line at the baseof the quadrilateral.

It is noted that for all three non shadowedcases(I, II. and III), neither plant

geometry nor spatial distribution play a role in the shapeof the scattergram or the

relative location of a given pixe!. Similar scattergramscould have b_n achieved

using any plant _," _* ". _om_o (e.g., spheresor cones) or spatial distribution (e.g.: row

crops with an)' orientation) as long as the distribution of the refiectancesand the

percentageof vegetation cover were the same.

D°

reflectance.

CASE IV- SHADOWED SOIL BACh'GROUND, CONSTANT

VEGETATION AND SOIL REFLECTANCE

Shadows cast by vegetation can be an important, component of total pixel

Shadows change diurnally with the position of the sun and with the
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amount of diffuse solar radiation. Important seasonalchangesoccur both with the

sun's migration and with changesof plant structure.

CaseIV examinesthe effect of shadowscast by plants on soil. The solar and

view angles are arbitrarily assumed to be 30" and 0", respectively, and the

reflectancesare constant. The reflectanceequation for a given pixel is

R(A) = mRmi(A) + glRgI(A) + gsRgs(A) (12)

The scattergramsassociatedwith the three aggregationlevels for the Case IV

simulation are shown in Figures 8-a,b,c. They reveal several interesting relations

among percent cover and shadow, the level of aggregation, and the characteristic

shapeof the scattergram.

All the data pairs fall within a spacedefinedby a triangle. This is illustrated

using the level 5 aggregationas indicated in Figure 9 (an expanded version of 8a).

The vertices of the triangle (labeled Points B, C, and D) correspondto the assumed

pure spectra of the full shadow (reflectance = 0.0), full canopy, and pure soil,

respectively, as indicated in Table 1.

Since pixets located within the triangle are linear mixtures of the zhree cover

types, the exact percentage of an)' cover type can be determined on the basis of its

location in the scattergram. For instance, the percent covers for an arbitrary pixel

A shown on Fi_-e 9 can be determined _aphicall.v a.s follows. First, lines EF and-
r

GH are drawn through pixel A parallel to CD and BD, respectively. It is then

noted that line EF is located about one--third of the distance between the line CD

and point B. That indicates that pixel A contains 33 percent shadow. Line OH is

situated about one-fourth the distance between the line BD and point C, indicating

that pixel A has 25 percent vegetation cover. The remaining cover, 42 percent, is
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bare soil, which can be checkedon the basis of pixel A's location between line BC

and point D.

The above determination of the three cover types is simply a graphical

illustration of an analytical solution applicable within the limits of the Case IV

assumptions. It can be applied to any level of aggregation. The solution could also

be achievedalgebraically using equation (13) for both wavelengths (two equations)

and equation (8).

The Case IV scattergramsalso reveal an important relation between shadow

length scaleand pixel size. For instance, at the level 5 aggregation,since the length

scale of the shadow is about the same as the pixel scale, there are numerous

instanceswhen the shadowof a tree in one pixel falls onto an adjacent pixel. The

three componentsof the pixel (vegetation, shadowedsoil and illuminated soil) are

independent of each other in a majority of cases. As a result, pixels can occupy

almost any space within the limits of the triangular scattergram given a large

enoughsamplesize.

As the level of aggregationincreases,however, the length scale of the shadows

becom_ much smaller than the size of the pixel. As a result, shadows associated

with a given tree fall increasingly within the same pixel and the amount of ground

shadow becomes more and more correlated with the amount of veget, ation cover.

Mathematically, a covariance is generated among the three cover variables for the
4

higher levels of ac%_regation which can be expressed,

and equation (12) becomes

gs = gs(m)

gI = gI(m) = l-m-gs(m)

(13)

(14)
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POOR QUALITY

R(,_)= R[A, m, gl(m), gs(m)] (15)

A major consequence of the above relations is that it reduces the feasible

•_... __ region in the scattergram. Even at the level 5 aggregation (Figure 8a), that effect is

manifested as a slight indentation in the upper right hand side of the triangular

........... scattergram. At higher levels of aggregation, Equation (16) implies that there is

only one position in the scattergram associated with a given canopy cover. As a

result, one should expect the triangular scattergram observed at the level 5

_ aggregation to collapse to a single curved line when the shadow length scale becomes

- small relative to the pixel size. That is indeed shown to be true in a progressive

.............. manner by examining the sequential shapes of the scattergrams in Figure 8b (level

10 aggregation) and Figure 8c (level 30 aggregation).

E. CASE V- SHADOWED SOIL BACKGROUND, VARIABLE SOIL

REFLECTANCE

Case V is a more realistic version of the shadow model in which soil

reflectance is assumed normally distributed as in Case II.

for an individual pixel is

R(A) = mRml (A) + giRgi(A) + gsRgs(A)

The governing equation

(16)

The resulting scattergrams for the different levels of aggregation are shown in

Fig-ure 10.

The scatter_ams of the Case V simulation represent a combination of the

effects illustrated in Case II (constant vegetation reflectance, variable soil

............... reflectance) and Case IV (shadow effects).
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For instance,the scattergram of the ]eve|5 aggregation, Figure 10a, exhibits a
!

triangular shape overall, but with a pronounced indentation in the upper right

portion due to the shadow effects. It can be regarded as a superposition of many

triangular scattergrams, each for a homogeneous soil (constant background

reflectance), similar to that of Case IV, level 5 aggregation (Figure 9). That is

illustrated in Figure 11 (expanded version of 10a). Those triangles share two

common vertices at 1) the point of pure shadow reflectance (point B), and 2) the

point of pure vegetation reflectance (point C). The third vertex (labeled Dl, D2, D3,

... etc.) is unique for each triangle, representing the reflectivity of a particular soil

which is homogeneous at that aggregation. The collection of all vertices, D,

constitutes the true soil line.

In the particular example shown, the true soil line has an intercept greater

than zero, and is thus situated slightly inside the boundaries of the overall

scatter_am, as indicated in Fig-ure 11. It is also possible, however, that the

shadowed soil reflectance lies above the soil line. Only in such cases will the bottom

of the scattergrarn accurate]y represent the true soil line.

An important consequence of the level 5 ag_egation is that pixels containing

different mixtures of vegetation, shadow, and variable soil can occupy the same

location in the scattergrarn. As a result, the percent cover of individual pixels can

not be determined explicitly as shown in previous examples.

r

The scattergrams of the levels 10 and 30 aggregation are shown in Figures 10b

and 10c, respectively. As in Case IV, because of the unique relation between shadow

and vegetation cover at this scale, the scattergrams collapse progressively to the

shape of a "tasseled cap" [1]. At the level 30 aggregation, the scattergram consists

of a series of juxtaposed curved lines, each line possessing constant average soil

reflectivity (-. nilar to Case IV, level 30 aggregation, Figure 8c), extending from
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individual points on the true soil line to the tip of the tasseled cap. That is

illustrated in Figure 12 (expandedversionof 10c).

Unlike the level 5 aggregation,percent cover can be estimated for Case V,

level 30 aggregation, in a manner similar to CasesII and IV. Percent cover is

proportional to the distancebetweenthe soil line and the tip of the tasseledcap.

VI. SCATTERGRAM OF A PECAN ORCHARD

This section applies the canopy model to a pecan orchard for which actual

aerial radiometric observations have been obtained. A comparison is made between

the plots of the radiometric data in the red-IR reflectance space, and a hypothetical

scattergrarn constructed from ground truth measurements at the time of overflight.

The study site is located near Maricopa, Arizona, about 40 km south of

Phoenix. Aerial radiometric measurements were collected at 9:30 a.m. on June 12,-

1988, as part of the MAC III experiment organized by the Water Conservation

laboratory, Agricultural Research Service, Phoenix, Arizona. Radiometric

observation were made using an Exotech radiometer with Thematic Mapper red

-c,(0.62-0.69 _m) and IR (0.,_-0.90¢,_n) filters at a _ound resolution of about 40

't

\

meters.

The hypothetical scattergam is obtained by first conceptualizing the orchard

as a stochastic geometric surface. The orchard represents a special case in which the.
¢

trees are spatially distributed in a fixed geometric fashion, and the only random

variable is the soil reflectance. The size of the trees and thus the amount of canopy

cover, can vary from pixel to pixel.

Ground truth measurements taken at the time of overflight indicate that the

escan be represented as circular cylinders, equally spaced on a square grid, with- 20 -



an east-west orientation. The averageratio of canopydiameter to height is equal to

about unity. Tree height is generally constant in any given section of the orchard,

and thus trees are not shadowedby adjacent trees.

Since the length scale of the ground shadow is much smaller than the scale of

the pixel, the above configuration leads to a unique analytical relationship among the

fractional covers as described in Section V.E. For the particular orchard described

above, two different shadow regimes can be identified. Regime I occurs when the

trees are small and the entire shadow cast by a tree is observed. In this case the

fractional shadowed area gs is linearly related to the fractional canopy cover, m or

where # equals the tangent of the zenith angle and f is a similarity parameter equal

to the ratio of canopy diameter to tree height. Regime II occurs for larger trees

when the shadow cast by one tree extends far enough as to be overlapped, in part,

by the canopy of an adjacent tree. A second term is added to the above equation to

account for that decrease in shadowed area, or

I 7]

- 21 -



In both regimes,the illuminated soil is constrainedby

. = 1 - m (19)_I - gs

The graphical forms of gs and gI are given in Figure 13.

Also plotted on Figure 13 are the actual fractional cover estimates of several

pixels obtained from aerial video. The plots indicate that the theoretical curves of

the fractional shadow and illuminated soil agree reasonably well with the actual

data.

The hypothetical reflectance of a pixel is described by

R(A) = m Rmi(A ) + gs Rgs(A) + gI R-gi(A) (20)

where RmI(A), Rgs(A ) and --RgI(A) represent ground truth reflectances of the illumi-

nated canopy, shadowed soil, and illuminated soil, respectively. Since no treeless

pixels existed in the orchard itself, the soil reflectance was obtained by sensing fields

immediately adjacent to the orchard which contained a mixture of bare soil and

senesced _asses. The soil line obtained from a red-infrared plot of the data is

shown in Figure 14. The line exhibits a nearly linear relationship as described in

Section IV and equation (8). The mean, standard deviation, and covariance length

scale (computed as the average e-folding distance of the empirical correlation

function) of those soil pixels, together with the parameters of the soil line are-

provided in Table 2. '

Ground truth values of the pecan canopy's bulk reflectance could not be easily

obtained due to the large size of the trees. However, the aerial data indicate that

- 22 -



the bulk canopy reflectanceis about 2 - 4% in the red band and 45 - 55% in the IR

band. The mid-points of those values (canopy red reflectance = 3.0°£; canopy IR

reflectance = 50%) were arbitrarily chosen as estimates of the canopy reflectances.

Shadowed reflectances were assumed to equal 10% of the canopy reflectances.

Using (17) through (20), a hypothetical orchard scene was constructed by

superposing canopy cover ranging from 10 to 70 percent onto each of the soil

background pixels. The resulting scattergram based on that model is shown in

Figure 14. It possesses many similarities to the simulated cases presented earlier,

including a triangular shape with curved sides and a flat base.

Also plotted on Figure 14 are several radiometric data for which the subpixel

fractional covers are known. The orchard itself does not possess a wide range of

vegetation cover needed to establish a complete triangular scatter_am. However, a

comparison of the actual data with the hypothetical scattergram indicates that their

location is consistent with the predicted values. A summary of the actual and

hypothetical fractional covers for four pixe!s is provided in Table 3. The good

agreement achieved above serves as a preliminary confirmation of the validi_y of the

stochasZic model for explaining how subpixel variations in cover type affect the

relativelocation of pixelsin a red-infrared scattergram.

VI. SUM:MARY

This report has presented a flexible, physically-based approach for"

characterizing the spatial variability of semivegetated regions by modeling _ the

landscape as a stochastic geometric surface. The reflectance model is intended for

regional scale investigations in which the parameterization of numerous plant and

soil properties is infeasible. By absorbing the variability of such properties into a

few bulk plant and soil variables, an in]: _ent tradeoff is made between the amount

- 23 -



of physical detail which can be modeled and the size of the region which can be

investigated.

The utility of the canopyreflectancemodel for understandingthe physical basis

of red-infrared scattergrams has been demonstrated by examining five different

stochastic landscapesin a progressivemanner. By altering only one of the bulk

model variables at a time, the theoretical contribution of each of them toward the

evolution of the typical triangular shape of red-infrared scattergrams has been

examined. The model has also been shown to be a viable mechanism for

understanding the sensitivity of the scattergram to such factors as the scale of the

pixel, and the scaleof the subpixel elements. One example is the explanation of the

existence of the tasseled cap which has been shown, at least in part, to be a

manifestation of the covariancewhich exists between cover types when the scale of

the pixel is much greater than the shadow length scale.

A potential application of the model is the solution to the inverse problem, the

estimation of subpixel parameters given an actual scattergram. That research

application is currently under way and will be summarized in a subsequent report.
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Figure 1.

Figure 2-a,b,e.

Figure 3.

Figure 4.

Figure 5-a,b,c.

Figure 6.

Figure 7-a,b,c.

Figure 8-a,b,c.

Figure 9.

Figure t0-a,b,c.

Figure 11.

Figure 12.

Fi_Lre 13.

Figure 14.

Figure Captions

Hypothetical soil lines.

Red-infrared scattergrams,CaseI simulation: variable percent
cover,constant soil and vegetationreflectances;no shadows.

Hypothetical segmentof bare soil scene,visible band.

Hypothetical soil reflectancecurve.

Red-infrared scattergrams, Case II simulation: variable

percent cover and soil reflectance, constant vegetation
reflectance; no shadows.

Interpretation of scattergram, Case II simulation, level 10
aggregation: variable percent cover and soil reflectance,
constant vegetation reflectance; no shadows.

Red-infrared scattergrams, Case III simulation: variable
percent cover, soil and vegetation refiectances; no shadows.

Red-infrared scatter_am, Case IV simulation: variable
percent cover, constant soil and vegetation reflectances;
shadowed soil back_ound.

Interpretation of scattergam, Case IV simulation, level 5
aggregation: variable percent cover, constant soil and

vegetation reflectances; shadowed soil background.

Red-infrared scattergrams, Case V simulation: variable
percent cover and soil reflectance, constant vegetation
reflectance; shadowed soil background.

Interpretation of scattergram, Case V simulation, level 5
13"O" _Y " •aoor%atlon, variable percent cover and soil reflectances,

constant vegetation reflectance; shadowed soil background.

Interpretation of scattergram, Case V simulation, level 30
a-0"re0"ation-o__, . variable percent cover and soil reflectance.
constant vegetation reflectance; shadowed soil backgotmd.

Theoretical relationship of percent illuminated soil, gI' and

percent shadowed soil, gs' as a function of percent canopy

cover, m, compared to actual data for a pecan orchard.

Hypothetical scattergrarn of pecan orchard compared with
actual aerial radiometric data.
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Table 2

SoL Line B_m_tezs

of Pecan

Red _ Band

(0.62--0.69 ;rm)

Infrared TM Band

_0.78--0.90 _)

Mean Reflectance (%) 27.3 32.8

Standard Deviation

of Reflectance (%) 3.7 4.1

Soil Line _Equation (%) :
Rg I(AIR ) = 1.09 Rg I(l_) + 3.06

Covarianoe Lenc_h -Scale -_ 200 meters

-31 -



Table 3

emotion of Am_al _ _c_
_ Omits far

Pecan _

Pixel

Number

Total Total

Cover Soil Cover

_L%I_ (%)

Total

Illuminated

Soil Cover

(%)

Actual Model Actual Model Actual Model

1 55 54 35 29 i0 17

2 50 51 30 29 20 20

3 15 21 11 25 74 54

4 19 20 12 24 69 56
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